Scalar model of inhomogeneous elastic and granular media

نویسندگان

  • Nguyen
  • Coppersmith
چکیده

We investigate theoretically how the stress propagation characteristics of granular materials evolve as they are subjected to increasing pressures, comparing the results of a two-dimensional scalar lattice model to those of a molecular dynamics simulation of slightly polydisperse disks. We characterize the statistical properties of the forces using the force histogram and a two-point spatial correlation function of the forces. For the lattice model, in the granular limit the force histogram has an exponential tail at large forces, while in the elastic regime the force histogram is much narrower, and has a form that depends on the realization of disorder in the model. The behavior of the force histogram in the molecular dynamics simulations as the pressure is increased is very similar to that displayed by the lattice model. In contrast, the spatial correlations evolve qualitatively differently in the lattice model and in the molecular dynamics simulations. For the lattice model, in the granular limit there are no in-plane stress-stress correlations, whereas in the molecular dynamics simulation significant in-plane correlations persist to the lowest pressures studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilaminate Elastoplastic Model for Granular Media

A multilaminate based model capable of predicting the behavior of granular material on the basis of sliding mechanisms and elastic behavior of particles is presented. The capability of the model to predict the behavior of sand under arbitrary stress paths is examined. The influences of rotation of the direction of principal stress axes and induced anisotropy are included in a rational way witho...

متن کامل

A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers

In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...

متن کامل

Self-stresses and crack formation by particle swelling in cohesive granular media.

We present a molecular-dynamics study of force patterns, tensile strength, and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Nonuniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as the strongest tensile contacts begin to fail. We find that the tensile strength is well below t...

متن کامل

Self-stresses and Crack Formation by Particle Swelling in Cohesive Granular Media

We present a molecular dynamics study of force patterns, tensile strength and crack formation in a cohesive granular model where the particles are subjected to swelling or shrinkage gradients. Non-uniform particle size change generates self-equilibrated forces that lead to crack initiation as soon as strongest tensile contacts begin to fail. We find that the coarse-grained stresses are correctl...

متن کامل

Constitutive Model for Multi-laminate Induced Anisotropic Double Hardening Elastic-plasticity of Sand

A constitutive multi-laminate based elastic-plastic model developed to be capable of accounting induced anisotropic behavior of granular material such as sand. The fabric feature or grain orientation characteristic effects through medium are considered in a rational way under any complex stress path, including cyclic loading. The salient feature of the developed model is a non-associative on pl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics

دوره 62 4 Pt B  شماره 

صفحات  -

تاریخ انتشار 2000